Math 10A with Professor Stankova
Quiz 3; Wednesday, 9/13/2017
Section \#107; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE If f, g, h are functions, then it is not possible to use the chain rule to find the derivative of $(f \circ g \circ h)$ because the chain rule only applies for the composition of two functions.
2. True FALSE It is possible for a function to be differentiable but not continuous.

Show your work and justify your answers.
3. (10 points) Let $f(x)=x^{-1} \exp \left(x^{-2}\right)$ and $g(x)=f^{-1}(x)$ be the inverse of f.
(a) (1 point) What is the domain of f ?

Solution: The only restriction is that $x \neq 0$ so $D=\mathbb{R} \backslash\{0\}$.
(b) (1 point) Find $\lim _{x \rightarrow 0^{+}} f(x)$.

Solution: Going from the right, we have that $x^{-1} \rightarrow+\infty$ and $\exp \left(x^{-2}\right) \rightarrow$ $\exp (\infty)=\infty$ so the limit is ∞.
(c) (5 points) Find $f^{\prime}(x)$.

Solution: First using the product rule then chain rule, we have that

$$
\frac{d}{d x}\left(x^{-1} e^{x^{-2}}\right)=-x^{-2} e^{x^{-2}}+x^{-1} e^{x^{-2}} \cdot \frac{-2}{x^{3}}=e^{x^{-2}}\left(-x^{-2}-2 x^{-4}\right)
$$

(d) (3 points) Given that $f(1)=e$, find $g^{\prime}(e)$.

Solution: Since $f(1)=e$, we know that $g(e)=1$. Then using the formula that $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$, we have that

$$
g^{\prime}(e)=\frac{1}{f^{\prime}(g(e))}=\frac{1}{f^{\prime}(1)}=\frac{1}{e(-1-2)}=\frac{-1}{3 e} .
$$

